

N32H785EC

Product Brief

The N32H785xxx7EC series adopts a high-performance dual-core architecture. The ARM Cortex-M7 core is the main core, running at frequencies up to 600MHz, supporting double-precision floating-point operations and DSP instructions. The Cortex-M4 core is the auxiliary core, running at frequencies up to 300MHz. It has (2/4MB) of onchip FLASH, integrates up to 1504KB of SRAM (including 1024KB TCM SRAM and 480KB SRAM) + 4KB Backup SRAM, integrates 3 12-bit 5Msps ADCs, 4 high-speed comparators, 6 12-bit DACs, and features multiple high-speed communication interfaces including U(S)ART, I2C, xSPI, SPI, USBFS Dual Role, USBHS Dual Role, CAN-FD, SDRAM, FEMC, SDMMC, 10/100/1000M Ethernet, and EtherCAT. It supports digital camera interface (DVP), TFT-LCD graphic interface, JPEG hardware encoder/decoder and GPU. The chip has a built-in high-performance encryption algorithm hardware acceleration engine supporting AES/TDES, and SHA algorithms, supports TRNG true random number generator, and supports CRC8/16/32. It supports up to 166 GPIOs and is available in TFBGA240+25 package.

Key Features

- Dual-Core Architecture CPU (Cortex-M7 and Cortex-M4F)
 - ARM Coretex-M7
 - o 32-bit ARM Cortex-M7 core, double-precision floating-point unit, supports DSP instructions and MPU
 - Built-in 32KB instruction cache and 32KB data cache with ECC
 - o Maximum frequency 600MHz, 1284 DMIPS
 - ARM Coretex-M4F
 - 32-bit ARM Cortex-M4F core + FPU, single-cycle hardware multiply-divide instructions, supports DSP instructions and MPU
 - Built-in 16KB instruction cache and 16KB data cache with parity checking, supports Flash acceleration unit with 0 wait state program execution
 - Maximum frequency 300MHz, 375 DMIPS

Encrypted Memory

- 2M/4M Byte on-chip Flash, supports encrypted storage with automatic program decryption during execution
- 1504KB built-in SRAM with ECC support
 - o 1024KB TCM SRAM, configurable as D-TCM, I-TCM or SRAM
 - o 480KB on-chip SRAM
- 4KB Backup SRAM with ECC support

Operating Modes

- Run mode
- SLEEP mode: AXI enabled, AHB enabled
- Stop0 mode: SRAM, TCM, RTC, LSE, IWDG enabled
- Stop2 mode: Flash in standby mode, SRAM, TCM, RTC, LSE, IWDG, Backup SRAM, backup registers enabled,
 I/O state maintained

- Standby mode: Backup SRAM, RTC, IWDG, LSE, backup registers enabled, SRAM and TCM disabled
- VBAT mode: Backup SRAM, RTC, LSE, backup registers enabled

Clock

- 4MHz~48MHz external high-speed crystal
- 4MHz~50MHz external clock input
- 32.768KHz external low-speed crystal
- Three built-in high-speed PLLs
- Built-in MSI clock supporting 31.25K/62.5K/125K/250K/500K/1M/2M/4M/8M/16MHz configurations
- Internal high-speed RC 64MHz
- Internal low-speed RC 32KHz

Reset

- Supports power-on/power-down/external pin reset
- Supports watchdog reset and software system reset
- Supports programmable voltage detection

• High-Speed Communication Interfaces

- 8 USART interfaces/7 UART interfaces, supporting ISO7816, IrDA, LIN
- 2 LPUART interfaces
- 7 SPI interfaces, supporting master/slave modes, up to 50 MHz
- 10 I2C interfaces, up to 3.4 MHz, configurable master/slave modes, supports dual address response in slave mode
- 1 USBFS Dual Role interface
- 1 USBHS Dual Role interface with built-in high-speed PHY
- 8 CAN-FD bus interfaces
- 2 Ethernet MAC interfaces: ETH1 supports 10M/100M/1000M rates, ETH2 supports 10M/100M rates, both support IEEE 1588 time synchronization protocol
- 1 EtherCAT slave interface (ESC), up to 100Mbit/s, supports 2 MII ports, 8 fieldbus memory management units (FMMU), 8 synchronization managers (SM), 64-bit distributed clock (DC)

• High-Performance Analog Interfaces

- 3 12-bit 5Msps ADCs, supporting 12-bit/10-bit resolution with hardware oversampling up to 16-bit, up to 55 external single-ended input channels, 5 internal single-ended input channels, supporting single-ended and differential modes
- 4 high-speed analog comparators
- 6 12-bit DACs: 2 1Msps DACs supporting buffered/unbuffered external output (internal output only supports unbuffered mode; simultaneous internal/external output requires buffer enabled), 4 DACs supporting only internal chip output with 15Msps sampling rate and unbuffered output
- 2 MCO outputs, configurable to output SYSCLK, HSE, MSI, LSE, LSI, HSI64 or PLL clock division
- 1 reference voltage VREFBUF (configurable: 1.5V/1.8V/2.048V/2.5V)
- 1 temperature sensor

Audio Interfaces

4 I2S interfaces, supporting half/full duplex modes, audio sampling rates from 8KHz to 192KHz

8 PDM digital microphone interfaces built into DSMU

Memory Expansion Interfaces

- 1 FEMC (Flexible External Memory Controller) interface, 100 MHz bus rate, SRAM/PSRAM/Nor Flash supporting 16/32-bit data width, NAND Flash supporting 8/16-bit data width
- 1 xSPI interface, supporting 1/2/4/8-bit data width, master/slave configurable, up to 133 MHz, usable for expanding SRAM,
 PSRAM and Flash, supports XIP
- 1 SDRAM interface, up to 133 MHz
- 2 SDMMC interfaces, supporting SD/SDIO 3.0, eMMC 4.51 format, up to 104MHz

• Image Processing Interfaces

- 2 digital camera interfaces (DVP), supporting 8/10/12/16bit, up to 110MHz
- 1 TFT-LCD display interface, supporting up to 24-bit parallel digital RGB LCD with all signal interfaces for direct connection to various LCD and TFT panels, resolution up to 1920x1080
- Built-in 2.5D graphics processor supporting image scaling, rotation, mixing, anti-aliasing, texture mapping, etc.
- Hardware JPEG encoder/decoder
- Maximum support for 166 GPIOs, low-speed GPIOs support 5V tolerance (under VDD=3.3V±10% condition)
- Motor control Cordic accelerator, supporting trigonometric and hyperbolic functions, supports floating-point input and output
- Delta Sigma Module Unit (DSMU)
- Built-in filter algorithm accelerator FMAC, supporting FIR and IIR filtering
- 3 high-speed DMA controllers, each supporting 8 channels, 1 MDMA supporting 16 channels, fully configurable channel source and destination addresses
- RTC real-time clock, supporting perpetual calendar with leap year, alarm events, periodic wake-up, internal/external clock calibration

Timers

- 2 16-bit ultra-high precision timers (SHRTIM1/SHRTIM2), highest control precision 100ps, each with 1 master timer and 6 16-bit slave timer units. Each timer unit has 2 independent channels, supporting 12 independent PWM outputs or 6 pairs of complementary PWM outputs
- 4 16-bit advanced timers, supporting input capture, complementary output, quadrature encoder input, etc., highest control
 precision 3.3ns; each timer has 6 independent channels, 4 of which support 4 pairs of complementary PWM outputs
- 10 16-bit general-purpose timers (GTIMA17/GTIMB13), each with 4 independent channels, supporting input capture, output compare, PWM generation
- 4 32-bit basic timers (BTIM1~4)
- 5 16-bit low-power timers (LPTIM1~5), operational in Stop2 mode
- 2x 24-bit SysTick, 2x 14-bit window watchdogs (WWDG), 2x 12-bit independent watchdogs (IWDG)

Programming

- Supports SWD/JTAG online debugging interfaces
- Supports USB, UART Bootloader

Security Features

FLASH has up to 4 encryption partitions, supporting storage encryption

- Supports write protection (WRP), multiple read protection (RDP) levels (L0/L1/L2)
- Built-in cryptographic hardware acceleration engine, supporting AES/TDES, SHA, SM4 algorithms
- TRNG true random number generator, CRC8/16/32 computation
- Supports secure boot, encrypted program download, secure update, external high and low-speed clock failure detection
- Supports tamper detection

• 128-bit UCID supported in OTP

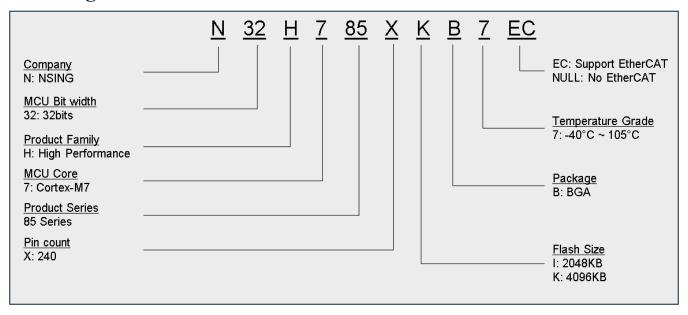
Operating Conditions

- Operating voltage range: 2.3V~3.6V
- Chip junction temperature range: -40°C~125°C

Certification

- USB IF
- IEC61508 SIL2

Package


- TFBGA240+25 (14mm x 14mm)

Ordering Model

Series	Model
N32H785xxx7EC	N32H785XKB7EC, N32H785XIB7EC

1 Naming Convention

2 Product Mode and Resources Configuration

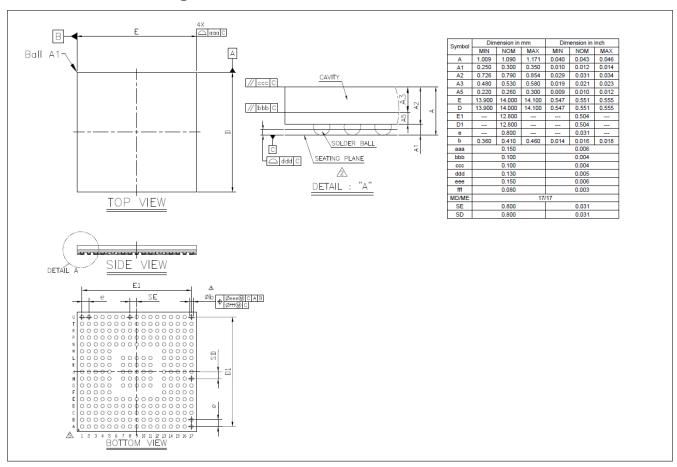
Table 0-1 N32H785xxx7ECSeries Resource Configuration

Devi	ice Model	N32H785XKB7EC	N32H785XIB7EC								
Flasl	h (KB)	4096	2048								
	TCM	1024									
SRAM (KB)	System RAM	480									
(RD)	Backup RAM	4									
C	M7	600M	ИНZ								
Core	M4	300MHz									
Operat	ing Voltage	2.3V~	3.6V								
DCDC ((step-down)	Yes									
	Cordic	Yes									
Coprocessor	DSMU	Yes									
<u> </u>	FMAC	Yes									
	SHRTIM	2									
	ADTIM	4									
•	GPTIM	10									
•	BSTIM	4									
Timers	LPTIM	5									
•	SysTick timer	2									
•	WWDG	2*14bit									
•	IWDG	2*12bit									
•	RTC	Yes									
	SPI/I2S	7/4									
•	I2C	10									
	USART	8									
	UART	7									
•	LPUART	2									
Communica	USBHS Dual Role	1									
tion Interfce	USBFS Dual Role	1									
<u> </u>	CAN FD	8									
-	ESC	Yes									
	10/100M ETH	1									
	10/100/1000M ETH	1									
Expanded Storage	SDRAM	Ye	s								
	xSPI	1									
	FEMC	Yes									
	SDMMC	2									
	12bit ADC	3									
Analog	12bit DAC Number of channels	2+4 ⁽¹⁾ 2 External channels									
-	比较器	4									

	VREFBUF	Yes						
	LCDC	Yes						
T	GPU	Yes						
Imaging	JPEG	Yes						
	DVP	2						
	GPIO	166						
	DMA	3						
Numbe	er of channels	24Channel						
1	MDMA	1						
Numbe	er of channels	16Channel						
Algori	thm Support	DES/3DES, AES, SHA1/SHA224/SHA256, CRC8/16/CRC32						
Security Protection		Read/write protection (RDP/WRP), storage encryption, secure boot						
Package		TFBGA240+25						

Note: 4 DACs only support internal connection and cannot output to GPIO

3 Package


TFBGA240+25 Package

TFBGA240+25 Pin Distribution

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	VSS	PI6	PI5	PI4	PB5	NC	VCAP	PK5	PG10	PG9	PD5	PD4	PC10	PA15	PII	PIO	vss
В	$\begin{pmatrix} VBA \\ T \end{pmatrix}$	VSS	PI7	PEI	PB6	VSS	PB4	PK4	PG11	PJ15	\bigcirc PD6	PD3	PC11	PA14	PI2	PH15	PH14
С	OSC3 2_OU T	PC14- OSC3 2_IN	PE2	PE0	PB7	PB3	PK6	PK3	PG12	VSS	PD7	PC12	VSS	PI3	PA13	VSS	NC
D	PE5	PE4	PE3	PB9	PB8	PG15	PK7	PG14	PG13	PJ14	(PJ12)	PD2	PD0	PA10	PA9	PH13	VCAP
Е	(VLXS MPS	PI9	PC13	PI8	PE6	VDD	NC	BOO T0	VDD	(PJ13)	VDD	PDI	PC8	PC9	PA8	USB1 _DP	USB1 DM
F	(VDD SMPS)	VSSS MPS	PI10	PII1	VDD								PC7	PC6	PG8	PG7	(VDD3 3_US B
G	PF2	VFBS MPS	PF1	PFO			VSS	VSS	VSS	VSS	VSS		VDD	PG5	PG6	VSS	NC
Н	PI12	PI13	PI14	PF3	(VDD)		VSS	VSS	VSS	VSS	VSS			PG4	PG3	PG2	PK2
J	OSC_OUT	OSC_IN	VSS	PF5	PF4		VSS	$\sqrt{v_{\rm SS}}$	VSS	VSS	VSS		VDD	PK0	PK1	VSS	vss
K	NRST	PF6	PF7	PF8			VSS	(vss)	VSS	VSS	VSS		$\boxed{\text{VDD}}$	PJI1	VSS	NC	NC
L	$\begin{pmatrix} VDD\\A \end{pmatrix}$	PC0	(PF10)	PF9	VDD		VSS	(vss)	VSS	VSS	VSS		$\boxed{\text{VDD}}$	PJ10	VSS	NC	NC
M	VREF +	PCI	PC2	PC3									$\boxed{\text{VDD}}$	PJ9	VSS	NC	NC
N	VREF -	PH2	PA2	PAI	PA0	PJO	$\boxed{\text{VDD}}$	$\sqrt{\text{VDD}}$	PE10	$\boxed{\text{VDD}}$	VDD	VDD	PJ8	РЈ7	PJ6	VSS	NC
P	VSSA	PH3	PH4	PH5	PI15	PJI	PF13	PF14	PE9	PE11	(PB10)	(PBII)	PH10	PH11	PD15	PD14	VDD
R	PC2_C	PC3_C	PA6	VSS	PA7	PB2	PF12	VSS	PF15	PE12	PE15	PJ5	PH9	PH12	PDII	PD12	PD13
T	PAO_C	$\begin{pmatrix} PA1_{-} \\ C \end{pmatrix}$	PA5	PC4	PBI		(PF11)		PE8	PE13	PH6	VSS	PH8	PB12	PB15	$\boxed{\text{PD10}}$	PD9
U	VSS	PA3	PA4	PC5	PB0	PJ3	PJ4	PGI	PE7	PE14	VCAP	NC	PH7	PB13	PB14	PD8	vss

TFBGA240+25 Package Size

4 Version History

Version	Date	Changes
V1.0.0	2025.4.23	First release

5 Disclaimer

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD. (Hereinafter referred to as NSING). This document, and the product of NSING described herein (Hereinafter referred to as the Product) are owned by NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions worldwide. The intellectual properties of the product belong to Nations Technologies Inc. and Nations Technologies Inc. does not grant any third party any license under its patents, copyrights, trademarks, or other intellectual property rights. Names and brands of third party may be mentioned or referred thereto (if any) for identification purposes only. NSING reserves the right to make changes, corrections, enhancements, modifications, and improvements to this document at any time without notice. Please contact NSING and obtain the latest version of this document before placing orders. Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no responsibility for the accuracy and reliability of this document. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or consequential damages arising in any way out of the use of this document or the Product. NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, Insecure Usage'. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to supporter sustain life. All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any customer's Insecure Usage Any express or implied warranty with regard to this document or the Product, including, but not limited to. The warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed to the fullest extent permitted by law. Unless otherwise explicitly permitted by NATIONS, anyone may not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.