

 1/25

Application Note

Use the MMU to protect FLASH partitions in multi-user scenarios

Introduction

In the process of embedded product development, sometimes there are scenarios in which multiple users

are required to develop application software in different stages within a single MCU. In this scenario, the

codes and data of each user may not be shared with other users due to copyright or security considerations.

So how can such problems be solved?

This document is mainly aimed at guiding users how to use the NSING MCU series products in the above-

mentioned application scenarios. By using the embedded memory management unit (Memory

Management Unit, MMU), it achieves the multi-user areas division and manages access permissions of

the FLASH main storage area, so as to solve the problem of code copyright protection and data security

in the multi-user development process. Therefore, it can be widely used in various scenarios such as

copyright protection, sensitive data and multi-user code protection.

This document is only applicable to NSING MCU products with embedded MMU. Currently, the

supported product series include N32G452 series, N32G455 series, N32G457 series, N32G4FR series,

N32WB452 series, N32L43x series, N32G43x series and N32L40x series.

 2/25

Contents

 Implementation Mechanism Of Partition Protection ... 3

 Function Description Of The MMU ... 4

2.1 User Area Division .. 4

2.2 Access Permission Management ... 6

 Operation Instruction .. 7

3.1 The Operating Environment .. 7

3.2 Operation Steps ... 7

3.2.1 Device Enters The Bootloader ... 7

3.2.2 Device Connection Tool .. 7

3.2.3 Configuration Partition ... 8

3.2.4 Program Download .. 9

3.2.4.1 Download Program Through The Debugging Interface ... 9

3.2.4.2 Download Program Through The Built-In Bootloader .. 10

 Example Projects.. 14

4.1 Section Address Configuration ... 14

4.1.1 Sct Distributed Load File ... 14

4.2 Generating A Bin File ... 16

4.3 Partition Access Operation .. 17

4.3.1 Call Api .. 18

4.3.2 Read And Write Data Mmu Abnormal Alarm ... 20

4.3.3 Interrupt Handling .. 21

 Conclusion .. 23

 Version History .. 24

 Disclaimer ... 25

 3/25

 Implementation Mechanism Of Partition Protection

Generally, the FLASH memory (FLASH) in the MCU chip is connected to the memory bus, and the CPU

can access any area in the FLASH without limit. The embedded Flash should be divided into multiple user

areas and protected in a single MCU to avoid different users from directly reading or modifying FLASH

contents of other user areas by CPU instructions. We can use embedded MMU in the Nsing MCU, which

can set the FLASH main memory partition and access permissions, at the same time can protect all the

application code and data from illegal access and tampering. It also indicates illegal access errors to the

memory and protected registers, all unauthorized operation will trigger the MMU abnormal alarm.

Thereby it can achieve multi-user FLASH partition protection.

Figure 1-1 MMU Partition Protection Implementation Mechanism

sram

bootloader

user1 user2 user3

flash

DATA DATA DATA

CODE CODE CODE

API API API

DATA API CODE

DATA CODE

IRWE IRWE IRWE

I I

I

I

 4/25

 Function Description Of The MMU

MMU can realize partition and access permissions management of FLASH main memory, and can divide

independent storage spaces for different applications of MCU (see Figure 2-1), and manage access

permissions.

 Figure 2-1 Memory Area Division

2.1 User Area Division

The FLASH main memory can be divided into USER1 (default), USER2, and USER3 at most. In practice,

the user area can be divided into the following situations. For the settings of each situation, refer to Table

2-1

Table 2-1 User Partition Setting Instructions

Description
Partition setup

sequence

FLASH space size involving

authority management(3)

Instructions

user1 user2 user3

There are no partitions and the

default is the user1 zone
- - - -

The user1 area is flash_size and

does not have the access permission

management function.

Set one partition , do not keep

the default user area(1) user1 flash_size - -

Set one partition, Keep the

default user area (user1)(2) user3 - - user3_size

The sum of the sizes of user1 and

user3 is flash_size. User1 does not

have the access permission

management function.

Set two partitions, do not keep

the default user area
user3→user1 user1_size - user3_size

The sum of the size of user1 and

user3 is flash_size.

Set two partitions, do not keep

the default user area
user3→user2 - user2_size user3_size The sum of the size of user1, user2,

and user3 is flash_size. User1 does

sram

bootloader

APP1 APP2 APP3

flash

 5/25

not have the access permission

management function.

Set up three partitions user3→user2→user1 user1_size user2_size user3_size
The sum of the size of User1, user2,

and user3 is flash_size

Notes:

(1) "do not keep the default user area" means that all the space of FLASH main storage area is divided into user

areas through partition Settings, and each partition involves access permission management function;

(2) " Keep the default user area " means that user1 will not be partitionized, that is, user1 area will be left open

and access permission management is not involved;

(3) " FLASH space size involving authority management" refers to the FLASH main storage space with partition

size set.

When the FLASH main memory is divided into three regions, USER1 (default), USER2, and USER3, as

shown in Figure 2-2. The granularity of the partition is 16KB.

Figure 2-2 FLASH Main Storage Area Division Relationship

For details about how to set user partitions in the FLASH primary storage area, refer to Table 2-2. You

can divide the FLASH main memory by setting the size of each user partition. Partition settings are static

settings. Once set, the MCU will automatically load the configuration every time it is powered on. In

particular, partition settings can only be operated once, and the operation is irreversible.

Table 2-2 FLASH Main Storage Area Partition Setting Instructions

Partition users(3) The storage area Partition size range

USER1 0x0800_0000 ~ (0x0800_0000 + u1_size - 1) 16KB(1) ~ (flash_size) KB

USER2 (0x0800_0000 + u1_size) ~ (flash_end_addr - u3_size) 0 KB ~ (flash_size - 32)KB

USER3 (flash_end_addr - u3_size + 1) ~ (flash_end_addr)(2) 0 KB ~ (flash_size - 16)KB

Notes:

(1)
 The granularity of the partition is 16KB;

(2)
 Flash_end_addr varies according to model, and the corresponding flash_size is also different. Flash_size should be the sum of the

size of the flash_area USER1, USER2, and USER3. The size is (flash_end_addr - 0x0800_0000 + 1) KB.

USER 2

USER 1

USER 3 u 3 _ size

u 2 _ size

u 1 _ size

flash _ end _ addr

u 2 _ str _ addr

u 1 _ str _ addr

0 x 0800 _ 0000

 6/25

(3)
 User partition settings cannot be reset

2.2 Access Permission Management

The operation permissions of each user area of FLASH main memory are managed through user area

division to realize memory access control. Table 2-3 provides the access permissions of each user area

before and after FLASH main memory division.

Table 2-3 User Permission Table

Visited area

user1(4) user2 user3

Program ownership / Whether the partitions Whether the partitions Whether the partitions

Access method N(1) Y N Y N Y

user1 code IRWE(2),(3) IRWE IRWE I IRWE I

user2 code IRWE I IRWE IRWE IRWE I

user3 code IRWE I IRWE I IRWE IRWE

SRAM1/2 code IRWE I IRWE I IRWE I

DMA RW - RW - RW -

JTAG/SWD IRWE I IRWE I IRWE I

Notes:

(1) Before the partition, USER1, USER2, and USER3 are regarded as the same area, and all FLASH space is USER1 by default;

(2) I represents addressing, R represents reading, W represents writing, and E represents erasing;

(3) "Write Protection (WRP) Enable" is at the same level as "Access Rights Management for MMU Partitions".

(4) If the USER1 area size is not set (refer to Section 3.2.1 to Section 3.2.3 for "Operation steps"), the USER1 area does not have

access permission management.

 7/25

 Operation Instruction

You can partition the FLASH main memory area in MCU by using the Nations MCU Download Tool on

the PC provided by NSING. For details about how to use the Tool, refer to Nations MCU Download Tool

User Manual.

3.1 The Operating Environment

• Hardware environment: PC (Windows XP/7/10), development board N32G43XR-STB V1.0

(including N32G435RBL7 chip)

• Target device: N32G435RBL7 chip

• Software environment: Download tool (Nations MCU Download tool. Exe), USB DFU driver or USB-

to-serial driver (optional)

Note: Bootloader supports USB interface or USART interface download program, please confirm that the

USB DFU driver or USB-to-serial port driver has been installed before using. At the same time, confirm

that the target device has entered the Bootloader state, so that the device can be connected to the download

tool normally. For details about how to make the target device enter the Bootloader state, please refer to

the user manual of the target device chip. This document uses the N32G435RBL7 chip to download using

the USART interface as an example for illustration.

3.2 Operation Steps

Figure 3-1 shows the process for dividing user areas in the FLASH main memory area. The following

describes how to set partitions.

Figure 3-1 Partition Setup Steps

Device enters bootloader

Device connects tools

Configure partitions in turn

3.2.1 Device Enters the Bootloader

Connect the N32G435RBL7 BOOT0(PD0) pin to VDD, then power on the chip and enters the Bootloader.

Note: For the development board N32G43XR-STB V1.0, if using the USART interface, then connect the

USB Debug Port interface for power supply, otherwise use the USB COMM interface for power supply.

3.2.2 Device Connection Tool

Double-click Nations MCU Download Tool.exe to open the download tool. The interface is shown in

Figure 3-2. Here, please focus on the "Select Device" area. The interface defaults to "USART". Select the

matching port number as the device. The "COM port number" can be viewed through the "Device

Manager" of the PC. The serial port connected to the MCU in Figure 3-2 is identified as "COM3". At the

 8/25

same time, set the baud rate of USART (the default configuration "9600" can be used), click the "connect"

button, the left display interface will prompt "The device is connected!”. At this time, the device and the

tool have been connected normally. Note: USART1 in the Bootloader of N32G435RBL7 uses PA9 and

PA10 as TX and RX respectively. Please ensure that PA9 and PA10 are properly connected to TX and

RX of the serial port.

Figure 3-2 Download Tool Interface

3.2.3 Configuration Partition

Click the "Configure partition" button in the "Common operations" area to pop up the Configure Partition

dialog box, select the partition user ID (USER1, USER2 or USER3) in turn, and enter the size of the

partition (the value is set in the unit of partition granularity 16KB). As shown in Figure 3-3, suppose you

need to partition a 32KB area for USER3, select "USER3" for the partition and enter 0x02 for the size.

Click "Configure Partition" to confirm the configuration partition and complete the area division of the

current user ID.

 9/25

Figure 3-3 Interface For Configuring Partitions

Notes:

(1) The partition configuration operation is irreversible, please operate with caution

(2) If multiple partitions need to be configured, each user can enter the Bootloader configuration

respectively. For details about the configuration size and sequence, refer to Table 2-1 and Nations MCU

Download Tool User Manual. Improper operations may lead to configuration failure.

3.2.4 Program Download

After the partition settings take effect, the user area cannot be accessed using the debugging interface.

Therefore, there are two ways to download a user application:

(1) Before setting the partition, download the program through the debugging interface or Bootloader.

(2) After setting the partition, download the program through the built-in Bootloader (recommended);

3.2.4.1 Download Program Through The Debugging Interface

If the partition is not set, N32G435RBL7 can also use the debugging interface (JTAG or SWD) to

download the program of each user. The specific operation steps are the same as the general situation and

will not be described again.

The following highlights the precautions for downloading programs of each partition through debugging

interfaces:

(1) Ensure that the start address position and size of FLASH and SRAM in the program are correct, and

must match with the partition configuration (for setting the start address position and size of FLASH and

SRAM, please refer to Section 4.1.1 " SCT distributed load file ");

(2) In order to ensure that the debug interface can download multiple programs in batches, in the MDK

"Options for Target->Debug ->Use: xx Debugger->Settings->Flash Download" page, "Download

Function" must not be selected "Erase Full Chip" "(see Figure 3-4).

 10/25

Figure 3-4 Interface For Flash Download

3.2.4.2 Download Program Through the Built-In Bootloader

Figure 3-5 Bootloader Download Operation Steps

Device enters bootloader

Device connects tools

Erase flash

Download program

In order to ensure the safety of the program update, the built-in Bootloader of the MCU also provides

functions such as partition authentication and encrypted download (for the corresponding enabling and

downloading procedures, please refer to the Nations MCU Download Tool User Manual). Here, the most

basic program download process is introduced and described. As shown in Figure 3-5, the Bootloader

download operation is roughly divided into 4 steps: the device enters the Bootloader, the device connects

to tool, erases the FLASH and downloads the program.

The specific process of program download is as follows:

1. Access the Bootloader and connect the tool

If the device is connected to a tool, skip this step and go to Step 3 to erase the FLASH. Otherwise, refer

to Section 3.2.1 and Section 3.2.2 to perform Step 1 and Step 2 in sequence to ensure the normal

connection between MCU and the download tool.

2. Erase FLASH

If the downloaded FLASH area is erased, go to Step 4. Otherwise, click “Erase sectors” in the “Common

operations” area on the main window of the download tool. In the dialog box that is displayed, select the

partition and enter the page address number (start page) and page number of the erased area. As shown in

 11/25

Figure 3-6, if the 32KB USER3 area is erased, the partition is selected as "USER3 ", the FLASH page

size of N32G435RBL7 is 2KB, and the page number corresponding to the starting address 0x08018000

of USER3 partition is 0x0030 and the page number is 0x000F. The erasing address ranges from

0x08018000 to 0x0801FFFF. After you confirm that the address range is correct, click "OK" and then

confirm that the FLASH erasure operation is complete and the FLASH erasure is successful. Close the

"Erase FLASH" dialog box and return to the main screen of the download tool.

Figure 3-6 Erase FLASH Interface

3. Download the program

Click the "Partition download configuration" option in the "Common Operations" drop-down menu to

open the "Partition download" dialog box. Sequentially check the partition download enable, select the

file path (the path where the program BIN is located), and enter the starting address (the default is each

partition) for USER1, USER2 and USER3. After checking that it is correct, click "OK" to automatically

download and return to the main interface of the download tool. (See Figure 3-8).

 12/25

Figure 3-7 Partition Download Interface

 13/25

Figure 3-8 Download Interface

Notes:

(1) The sequence between "partition setup" and "Bootloader downloading program" is not mandatory. To

ensure the security of the program, it is recommended to set the partition first, and then update the program;

(2) If no partition is set and the program is downloaded using the Bootloader, there is no need to operate

"Partition download". In the "Download" area, select the file path (the path where the program BIN is

located), enter the starting address, configure the erasing mode, and click "Download", wait for the

download to complete. After setting the partitions, users can configure and download programs for USER1,

USER2, or USER3 in "Partition download".

(3) The start address of download must match the start location of FLASH set by the program (refer to

Section 4.1.1 "SCT Scattered Loading Files"), otherwise the program may run abnormally.

 14/25

 Example Projects

In order to show the execution mode of the program after the FLASH main memory area is partitioned,

such as the function calling method between different partition areas, the different effects of reading data

normally or abnormally, the interrupt processing method, etc., three example projects will be provided

(path: Nationstech.N32G43x_Library.x.x.x\projects\n32g43x_EVAL\examples\MMU).

The following subsections will focus on the section address configuration of the project, the generation of

bin files, and the access operations between user partitions.

4.1 Section Address Configuration

Take the N42G435RBL7 chip as an example. Assume that the USER1, USER2, and USER3 user areas

are 64KB, 32KB, and 32KB respectively. In this case, the partition relationship of the FLASH main

memory area is shown in Figure 4-1. Each user can negotiate and divide the FLASH main memory area

according to the actual code amount of the application.

Figure 4-1 Flash Main Memory Area Partition Relationship

In addition to partition the FLASH main memory area, to avoid global variable storage space conflicts

among different partitioning programs, you can also partition the 32KB SRAM space of N42G435RBL7.

The SRAM of each user can store the global variables in the corresponding program, among which the

global variables of USER2 and USER3 need to be manually initialized. Since the starting address of the

chip program execution is 0x08000000, USER1 serves as an end user, is also responsible for processing

stacks and interrupt responses, so the SRAM of USER1 can also be used as stack space. The address

specified by the global variable needs to avoid the stack (see the project's .map file for the stack top

address).

SRAM partition is optional because the MMU of the N32G435RBL7 only manages partition access to the

FLASH main memory area. SRAM is actually shared by USER1, USER2, and USER3. Dividing the

SRAM into multiple regions is only for the stability of program execution (preventing overlapping of

global variable spaces in different partitions) and does not provide the function of "protecting data security

in user SRAM". According to the actual application, the space of global variables can be allocated by

users through mutual negotiation without dividing SRAM. In this sample, USER1, USER2 and USER3

share 32KB SRAM

After the user area is divided, the application programs of each user need to be downloaded to different

address spaces. Therefore, the corresponding projects need to configure their respective section addresses

to avoid program download failure or abnormal operation because the address space allocated by the

program is inconsistent with the download address.

4.1.1 SCT Distributed Load File

 15/25

The KEIL linker allocates each section address and generates the distributed load code according to the

configuration of the SCT distributed load file, so the location of a section can be customized by modifying

the SCT distributed load file.

Select the SCT file generation method

SCT files can be automatically generated using MDK, or you can use user-defined SCT files. This

selection can be configured through the MDK "Options for Target -> Linker->Use Memory Layout

from Target Dialog" option, as shown in Figure 4-2.

Figure 4-2 Choose How The SCT File Is Generated

Select the "Use Memory Layout from Target Dialog" option (default for SDK) to generate the SCT file

using the memory distribution configuration options of the "Options for Target -> Target" page. In this

case, "Options for Target -> Linker-> Scatter File" is invalid. You cannot manually open the generated

SCT File for editing. When the project construction is completed, MDK will generate a new SCT file to

overwrite the old one.

If you need to manually edit the SCT file, uncheck the “Use Memory Layout from Target Dialog”, and

specify the SCT file path in the options for “Options for Target -> Linker-> Scatter File” box. After that,

clicking "Edit" will open the SCT file automatically, and users can edit the file manually.

Configure storage distribution through Target control

After selecting "Options for Target -> Linker->Use Memory Layout from Target Dialog" in MDK, on the

“Options for Target -> Target” page, the memory distribution configuration takes effect automatically.

The default configuration in the SDK is automatically loaded after selecting the chip model on the

“Options for Target -> Device” page. After setting the FLASH partition, reset the memory configuration

is needed.

 16/25

Figure 4-3 Target Storage Distribution Configuration

In this example, USER1 is used as an example. Figure 4-4 shows the storage distribution configuration

on the Options for Target -> Target page. In the on-chip part, IROM1 starts at 0x08000000 and its size is

0x10000, which are exactly the start address and size of USER1's FLASH. If IRAM1 has a start address

of 0x20000000 and a size of 0x8000, they are the start address and size of USER1's SRAM region

respectively. In the figure, IROM1 and IRAM1 are checked by default, indicating that the current

configuration information will be used. If this parameter is unchecked, the storage configuration

information will not be used.

The projects of USER2 and USER3 can reset the memory configuration in a similar way. For details, refer

to the configuration of the corresponding example projects.

The path of the SCT file generated by MDK through the Target memory distribution configuration in

Figure 4-3 is ".\Objects\user1.sct "(default setting of SDK), and the content of the SCT file is shown in

Figure 4-4. You can manually edit the SCT file by referring to the file format.

Figure 4-4 SCT File Content

4.2 Generating a Bin File

To download the program through NSING MCU Download Tool, you need to download the bin file of the

program. Here, the fromelf instruction is used to generate a bin file. Users can also write their own Python

scripts and enter user instructions to execute the scripts.

On the configuration page of "Options for Target->User" of MDK, the "After Build/Rebuild" column is

 17/25

added to call the fromelf tool to form the instruction to generate bin file (generate bin according to axf

file), as shown in Figure 4-5

Figure 4-5 Interface For User Configuration

The instruction to generate the bin file first calls the fromelf tool, followed by the tool's options, output

file name, and input file name. If bin files and axf files are generated in the same folder "..\MDK-

ARM\Objects”, the user instruction of the sample project can be written as "fromelf --bin --output ..\MDK-

ARM\Objects\user1.bin ..\MDK-ARM\Objects\user1.axf ".Therefore, in step 4 "Download program" of

section 3.2.4.2 "Download program through the built-in bootloader ", select the bin file in this path.

4.3 Partition Access Operation

The sample projects for USER1, USER2, and USER3 work together to demonstrate mutual access

between different partitions. Download the sample projects of USER1, USER2, and USER3 to the

N32G435RBL7 chip respectively. After being powered on again, the chip with three partitions will

execute the code according to the flow shown in Figure 4-6 (refer to the partition size configuration in

section 4.1 "Section address configuration" for sample project). Chip program execution start address is

0x08000000, so USER1 as the end user is responsible for the control of the entire application process,

including system initialization, stack processing, interrupt processing and other operations.

The MMU limits the read and write operations between different FLASH partitions. The access between

partitions is realized by invoking API. For example, USER2 and USER3 have applications with certain

functions (encapsulated in API form) respectively, and USER1 accesses the application functions of

USER2 or USER3 by invoking the API. The MMU also restricts the partition user's relocation interrupt

vector table operations (SCB->VTOR). Only the end user USER1 has the permission to set SCB->VTOR,

and the address of the interrupt vector table must be in USER1's FLASH space. All unauthorized

operations involving MMU (such as unauthorized reading or writing of debugging interface/program,

unauthorized reading or writing of interrupt vector table address , etc.) will trigger the MMU abnormal

alarm and inform the user in time in the way of reset or interruption.

The following highlights three partition access operations: calling API across partitions, reading and

writing data across partitions, and interrupt handling.

 18/25

Figure 4-6 Example Project Execution Flow

user1 system initialization

Power on the system

USART configuration(for

printing)

MMU configuration

(including NVIC)

Execute user1 code (PA8

flashing light)

Call user2 API

Execute user2 code (PB4

flashing light)

Initialize user2 global

variables

user2 FLASH programming

Read user2 FLASH data

Call user3 API

Execute user3 code (PB5

flashing light)

read user2 global variables

Read user2 FLASH data

MMU interrupt exception

handling

USER1

USER2

USER1

USER3

USER1

4.3.1 Call API

The cross-partition call API is essentially the execution of a program by jumping to a function at a

specified location. Functions can be assigned addresses automatically by the compiler (see the

 19/25

project's .map file), or they can be assigned addresses by users of each partition (recommended). In API

scenarios that provide multiple cross-partition access, specifying fixed addresses for functions is clearly

advantageous. The "__attribute__" keyword in MDK can specify the address.

In this case, USER1 calls the API of USER2 and USER3, respectively. This section describes how USER1

invokes USER2 API for reference.

The FLASH of USER2 ranges from 0x0801_0000~0x0801_7FFF, and the SRAM ranges from

0x2000_4000~0x2000_6000. In the user2_demo.c of sample project user2, place function "void

Test_User2(void)") at address 0x08016000 (see Figure 4-7).

Figure 4-7 Specifies the Function Address

USER2 provides the jump address of the function to other partition users so that they can jump to this

address and call API functions. To facilitate co-development by multiple users, USER2 can use macros in

the user2_demo.h file to define jump addresses and jump operations for functions (see Figure 4-8). After

that, different users can get information about the jump to the application through the header file.

Figure 4-8 Jump Address and Function Pointer

For USER1, you can choose to add user2_demo.h to the example project user1. After that, the program of

 20/25

USER1 can jump to the execution function of USER2 by calling the API "API_FuncEntry2()"; to realize

operations such as PB4 flashing.

Note: The nature of calling the API across partitions does not limit the functions to be jumped. But there

is a special case that needs to be pointed out, it cannot jump to the reset function. The reason is that the

Reset_Handler function processing in startup_n32g43x.s (as shown in Figure 4-9) involves cross-partition

operations, which will trigger an MMU abnormal alarm.

Figure 4-9 Reset Handler Function Definition

4.3.2 Read and Write Data MMU Abnormal Alarm

After the FLASH partition configuration takes effect, cross-partition data reading and FLASH

programming, SRAM code accessing the user partition, DMA1/DMA2 or debugging interface accessing

the user partition will trigger the MMU abnormal alarm (see Section 4.3.3 “Interrupt Handling” for the

interrupt alarm mode and handling method). The example projects for USER2 and USER3 demonstrate

normal and abnormal data reading and writing, respectively.

In the user2_demo.c file of the example project user2, the example demo demonstrates that USER2 reads

and writes data in the owning partition area (SRAM or FLASH), as shown in Figure 4-7. Write the value

of the global variable flash_write_data in USER2 SRAM to the position 0x0801_7800 specified by

USER2 FLASH and verify that the data written is correct. The above operations are routine operations,

and the specific operation methods will not be described. It is important to note that the initial value of the

global variable of USER2 may not be 0 because the example project of USER2 did not execute the startup

process. Please initialize the global variable before using it.

USER3 can read and write USER2 SRAM. However, USER3 cannot write to USER2 FLASH partition

or read data from USER2 FLASH partition due to the partition permission management function of the

MMU. In USER3's example project user3, the file user3_demo.c contains the sample demo code that lines

66 in Figure 4-10 will trigger an MMU abnormal reset alarm (the default).

 21/25

Figure 4-10 USER3 Reading Data

4.3.3 Interrupt Handling

Since USER2 and USER3 cannot relocate the interrupt vector table (SCB->VTOR), all interrupt

operations involving USER2 and USER3 are handled by the end user USER1.So the three users need to

collaborate to complete the interrupt handling. USER2 and USER3 need to inform USER1 of their

respective interrupt handling and add it to USER1's program for processing. If the operations involved in

the interrupt service functions of USER2 and USER3 need to be kept secret, it is recommended that the

interrupt handling content be encapsulated as an API assigned to a fixed location in the manner described

in Section 4.3.1 "Call API", and that USER1 call the API to handle the corresponding interrupt.

There are two ways of MMU alarm: reset (default) or interrupt. In this example, we will demonstrate

MMU interrupt handling. In the n32g43x_mmu.c file, “void MMU_Init(MMU_ALARM_MODE mode)”

function is provided to configure the MMU alarm mode.

The example project user1 demonstrates how to use the MMU interrupt abnormalalarm. The

user1_mmu_demo.c file provides the configuration method for the MMU interrupt abnormal alarm

(sample code shown in Figure 4-11), and the MMU interrupt handler function is defined in the

n32g43x_it.c file (see Figure 4-12). Any unauthorized operation by USER1, USER2, or USER3 triggers

a call to the MMU interrupt handler function.

 22/25

Figure 4-11 MMU Interruption Alarm Configuration

Figure 4-12 MMU Interrupt Processing Example

 23/25

 Conclusion

The FLASH can be divided into three regions (USER1, USER2 or USER3) by using the embedded MMU

in the Nsing MCU chip, and the access control function is provided for each user region. It can not only

protect internal memory attacks (such as mutual access between different user areas, SRAM1/2 access,

etc.), but also resist some external attacks (such as debugging interface access, DMA access, etc.).

Users can set partitions and download programs through the Bootloader. Once the partition is successfully

set, the user area division and permission management functions take effect immediately. In addition, the

partition configuration can only be set once and cannot be reset. The operation is irreversible. These

features enable the MMU to prevent unauthorized access to FLASH and effectively protect data and code

stored in the FLASH. Thus, it plays a security role in application scenarios such as copyright protection

and sensitive data protection.

 24/25

 Version History

Version Date Changes

V1.0 2020.11.8 Initial release

V1.1 2022.6.22

1. Modify G436 to G43x

2. Modify section 3.2.4.2

3. Modify clerical error, delete watermark，modify notice，
adjust document format

4. The tool has been updated, corresponding to screenshot of

the updated tool

 25/25

 Disclaimer

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD.(Hereinafter referred to

as NSING).

This document, and the product of NSING described herein (Hereinafter referred to as the Product) are

owned by NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions

worldwide. The intellectual properties of the product belong to Nations Technologies Inc. and Nations

Technologies Inc. does not grant any third party any license under its patents, copyrights, trademarks, or

other intellectual property rights. Names and brands of third party may be mentioned or referred thereto

(if any) for identification purposes only. NSING reserves the right to make changes, corrections,

enhancements, modifications, and improvements to this document at any time without notice. Please

contact NSING and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no

responsibility for the accuracy and reliability of this document. It is the responsibility of the user of this

document to properly design, program, and test the functionality and safety of any application made of

this information and any resulting product. In no event shall NATIONS be liable for any direct, indirect,

incidental, special, exemplary, or consequential damages arising in any way out of the use of this

document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any

malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.

Such applications are deemed, Insecure Usage’. Insecure usage includes, but is not limited to: equipment

for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all

types of safety devices, and other applications intended to supporter sustain life. All Insecure Usage shall

be made at user's risk. User shall indemnify NATIONS and hold NATIONS harmless from and against

all claims, costs, damages, and other liabilities, arising from or related to any customer's Insecure Usage

Any express or implied warranty with regard to this document or the Product, including, but not limited

to. The warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed

to the fullest extent permitted by law. Unless otherwise explicitly permitted by NATIONS, anyone may

not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or

in part.

	1 Implementation Mechanism Of Partition Protection
	2 Function Description Of The MMU
	2.1 User Area Division
	2.2 Access Permission Management

	3 Operation Instruction
	3.1 The Operating Environment
	3.2 Operation Steps
	3.2.1 Device Enters the Bootloader
	3.2.2 Device Connection Tool
	3.2.3 Configuration Partition
	3.2.4 Program Download
	3.2.4.1 Download Program Through The Debugging Interface
	3.2.4.2 Download Program Through the Built-In Bootloader

	4 Example Projects
	4.1 Section Address Configuration
	4.1.1 SCT Distributed Load File

	4.2 Generating a Bin File
	4.3 Partition Access Operation
	4.3.1 Call API
	4.3.2 Read and Write Data MMU Abnormal Alarm
	4.3.3 Interrupt Handling

	5 Conclusion
	6 Version History
	7 Disclaimer

