

 1 / 20

Application Note

ARM GCC Development Environment Based on Windows Application Note

 2 / 20

Contens

1. Overview ... 3

2. Development Tools .. 3

2.1 Software .. 3

2.2 Hardware .. 3

3. Development Environment Setup ... 4

3.1 Installing VSCode ... 4

3.2 Installing the GCC Compilation Tool Chain... 4

3.3 Installing Make for Windows ... 4

3.4 Installing the JLink Tool ... 5

3.5 Adding Chip Support .. 5

3.6 JLink Download Test .. 5

4. SDK Contens ... 8

4.1 Makefile .. 8

4.2 .s file ... 8

4.3 .ld file .. 8

4.4 Printing remapping ... 9

4.5 JLink script ... 9

4.6 Clearing Scripts .. 9

5. Compile and Download .. 10

5.1 Workspace .. 10

5.2 Working Directory .. 10

5.3 Code Compilation ... 10

5.4 Downloading Firmware .. 11

5.5 Clearing Intermediate Files ... 11

6. Code Debugging .. 12

6.1 VSCode Settings ... 12

6.2 Makefile Settings .. 13

6.3 Debugging Examples .. 13

7. Configuration changes ... 17

7.1 Chip Model ... 17

7.2 Firmware Download Algorithm .. 17

7.3 Using the SDK Algorithm Library ... 17

7.4 Debug Configuration .. 18

7.5 Optimization Level ... 18

8. Version history .. 19

9. Disclaimer ... 20

 3 / 20

1. Overview

Using N32G430 series MCU as an example, this paper introduces the methods of setting up

development environment, code compiling, firmware downloading and code debugging based on

VSCode editor, GCC compilation tool chain and GDB debugging tool under Windows environment.

2. Development Tool

2.1 Software

• Editor Visual Studio Code 1.5x.x or above

• Compile tool chain arm-none-eabi-gcc 6.3.1 or above

• Make for Windows

• Download and debugging tool JLink_v6.40 or above (not exceeding hardware supported version)

2.2 Hardware

• Development board N32G430C8L7-STB V1.0

• JLink downloader V9.2 or above (not below the software supported version)

 4 / 20

3. Development Environment Setup

3.1 Installing VSCode

• Download the software: https://code.visualstudio.com/

VSCode is used for code viewing and editing. It also provides powershell and bash terminals for

command-line operations, which will be used throughout our development process.

3.2 Installing the GCC Compilation Tool Chain

• Download address:

https://launchpad.net/gcc-arm-embedded/+announcement/28093

Example version: 10-2020-q4-major

Check whether the installation is successful: Open a DOS command line window, type “arm-none-

eabi-gcc –v”

The installation is successful if the content shown in the following figure appears:

Figure 3-1 Information About the Successful Installation of GCC

If the installation is not successful, please do the following two checks.

1. Check whether environment variables are properly added

2. Go to “C:\Program Files (x86)\GNU Arm Embedded Toolchain\10-2020-q4-major\bin” and check

whether the “arm-none-eabi-gcc.exe” file name is correct

3.3 Installing Make for Windows

This tool is used to parse Makefile scripts. You can choose to install one of the following two software.

• Install the cmake.exe tool

Download address: http://www.equation.com/servlet/equation.cmd?fa=make

• Install MinGW and use its own make tool.

Check whether the installation is successful: Open a DOS command line window and type “make –v”.

The installation is successful if the content shown in the following figure appears:

Figure 3-2 Information About the Successful Installation of Make for Windows

If the installation is not successful, please do the following two checks

1. Check that the environment variables are properly added

https://code.visualstudio.com/
https://launchpad.net/gcc-arm-embedded/+announcement/28093
http://www.equation.com/servlet/equation.cmd?fa=make

 5 / 20

2. Go to the bin folder of the corresponding “make” installation directory to check whether the

“make.exe” file name is correct

3.4 Installing the JLink Tool

• Download the JLINK installation package, V6.90a or others version

https://www.segger.com/downloads/jlink/#-LinkSoftwareAndDocumentationPack

Figure 3-3 Installation Interface

3.5 Adding Chip Support

After installing JLink, you need to add our company's chip patch package to JLink, so that the

download algorithm can be correctly obtained during downloading and debugging.

For details, refer to <JLink Tool Adding Nsing Chip.7z>.

3.6 JLink Download Test

• Test the JLink environment installation

1. Connect the PC and JLink debugger, connect the development board, and power on;

2. Open cmd.exe command line tool, go to JLink installation directory “C:\Program Files

(x86)\SEGGER\JLink_V640”, type “jlink.exe”.

The below figure shows that the PC successfully connected to the JLink debugger.

https://www.segger.com/downloads/jlink/#-LinkSoftwareAndDocumentationPack

 6 / 20

Figure 3-4 Information About PC Successfully Connected To The JLink Debugger.

3. Then type the information sequentially as prompted: “connect”, “N32G430C8”, “SWD”,

“4000”. If the previous operation is successful, you will see the following output information,

JLink download debugging environment can be used normally.

 7 / 20

Figure 3-5 Information About JLink Download Debugging Environment Can Be Used Normally

 8 / 20

4. SDK Contens

SDK follows the issued SDK version, currently using V1.0.0. On this basis, the following

modifications are made to adapt to GCC development environment.

4.1 Makefile

Add “GCC” folder under module routines directory in SDK package: (please copy "GCC" folder to

each routine)

Figure 4-1 Add “GCC” Folder

The “Makefile” file is the GCC compilation script file.

4.2 .s File

In “Nations.n32g430_Library.1.0.0\firmware\CMSIS\device\startup” path of the SDK package, there

is a “startup_n32g430_gcc.s” file corresponding to the .s file.

Figure 4-2 The “startup_n32g430_gcc.s” File

4.3 .ld File

In “Nations.N32G430_Library.1.0.0\firmware\CMSIS\device” path of the SDK package, there is a

corresponding .s file for the GCC compiler named “n32g430_flash.ld”.

 9 / 20

Figure 4-3 The “n32g430_flash.ld” File

4.4 Printing Remapping

The “print_remap.c” file is added in the “bsp/src” directory of the SDK package for serial port printing

remapping.

Figure 4-4 The “print_remap.c” File

4.5 JLink Script

Added the “jlink” folder in home directory of the SDK package, which contains a JLink download

script for downloading firmware using the JLink tool.

Figure 4-5 Add The “jlink” Folder

4.6 Clearing Scripts

The “script” folder is added in home directory of the SDK package, and there is a “.bat” script in this

folder, which is used to clear intermediate files generated during compilation.

Figure 4-6 A “.bat” Script in “script” Folder

 10 / 20

5. Compile and Download

5.1 Workspace

Open the SDK folder in VSCode and save it as a workspace. The “.vscode” folder will be generated under the SDK folder

to place the workspace configuration file.

Figure 5-1 The “.vscode” Folder

5.2 Working Directory

Using the GPIO routine LedBlink as an example to enter the project directory:

“Nations.N32G430_Library.1.0.0\projects\n32g430_EVAL\examples\GPIO\LedBlink”

KEIL project “MDK-ARM”

GCC project “GCC”

Project source file “src /xxx.c”

Project header file “inc/XXX.h”

Makefile file “GCC/Makefile”

5.3 Code Compilation

In the terminal of the VSCode editor, switch to the “GCC” folder directory, then type “make” to start

compiling

Figure 5-2 Type “make” in the “GCC” Folder Directory

The .elf, .bin and .hex files will be generated after successful compilation without errors.

Figure 5-3 The .elf, .bin and .hex Files

The “build” folder is created under the “GCC” folder. The compiled firmware and intermediate files

 11 / 20

are stored in this folder.

5.4 Downloading Firmware

1. Connect PC -> JLink -> development board

2. In the terminal, type “make download”

Figure 5-4 Type “make download” in The “GCC” Folder Directory

Some information will be printed in the process. Finally, the download is complete

Figure 5-5 Information About Download Completed

3. After download is complete, the system will automatically reset and start running

4. If the download fails, please check the JLink configuration

5.5 Clearing Intermediate Files

Type “make clean” on the terminal to clear the intermediate files generated by the compilation.

 12 / 20

6. Code Debugging

6.1 VScode Settings

There is a “.vscode” folder in the SDK working path, which contains “launch.json” workspace

configuration file that needs to be configured for code debugging:

Figure 6-1 The “launch.json” Workspace Configuration File in The SDK Working Path

launch.json:

Figure 6-2 The Code of the VScode Debugger Configuration File

This is the VScode debugger configuration file, and the following changes should be made according

to your project path:

1. Specify the path to the GDB debugger: (absolute path)

 13 / 20

Figure 6-3 The Path To The GDB Debugger

The version of the GDB tool must match the version of the compiler tool. Otherwise, errors will be

reported or some functions will be unavailable. The arm-none-eabi-gdb.exe tool is usually in the same

directory as the arm-none-eabi-gcc.exe tool.

2. Specify the debug code “xxx.elf” file path: (Note: path cannot be too long)

Figure 6-4 The Path of Debug Code “xxx.elf” File

6.2 Makefile Settings

Open the routine “GCC/Makefile” file:

Figure 6-5 The Code from The Routine “GCC/Makefile” File

1. There is a debug startup configuration pointing to the JLinkGDBserver in the JLink installation

directory.

2. The “make” command is in debug mode by default, with some debugging information. If you want

to switch to the release version, you need to use the following command when compiling the code:

“make release =y”

6.3 Debugging Examples

Using the GPIO LedBlink project as an example to show how to start code debugging:

1. Open SDK project in VScode, switch to “LedLink/GCC” directory in terminal, and type “make”

to compile code

Figure 6-6 Information about Typing “make” To Compile Code

The output.elf, output.bin, output.hex files are generated in “GCC/build” folder.

2. Refer to Section 6.1 and 6.2 to configure the path in the launch.json file.

3. Connect the JLink debugger to the development board and power on.

4. Go to JLink installation directory and double-click JlinkGDBServer.exe

 14 / 20

Figure 6-7 The JlinkGDBServer.exe in JLink Installation Directory

Configure port, protocol, and chip model, click “OK”

Figure 6-8 Configure Information

If the JLink debugger is successfully connected to the chip:

 15 / 20

Figure 6-9 The Interface That JLink Debugger Successfully Connected To The Chip

5. Under VSCode working environment, press "F5" or click "Run" -> "Start debugging". At this

time, it can be seen that the label below turns green, indicating that GDB tool successfully

connects to JLinkGDBserver.

Figure 6-10 The Interface That GDB Tool Successfully Connect to JLinkGDBserver

6. VSCode automatically switches to the debug window.

 16 / 20

Figure 6-11 The Debug Interface

7. Debug buttons in the debug window: single step, continuous execution, restart, stop, etc.

Figure 6-12 The Debug Button

8. Now the program can run in single step or continuous execution mode

Figure 6-13 The Program Running in Single Step or Continuous Execution Mode

 17 / 20

7. Configuration Changes

7.1 Chip Model

If the chip used is not the N32G430 series, you need to modify the variables “TARGET_PLATFORM”

and “DEFS” in the “Makefile” file.

Figure 7-1 The Variables “TARGET_PLATFORM” And “DEFS” in the “Makefile” File

7.2 Firmware Download Algorithm

You need to type the chip type so that JLink can properly match the download algorithm.

Figure 7-2 ChipType in the “Makefile” File

Configure the download tool path according to the installation directory

Figure 7-3 The Download Tool Path in the “Makefile” File

7.3 Using the SDK Algorithm Library

By default, the algorithm library is not used. Please modify the variable “USELIB = 1” to use the

algorithm library.

Figure 7-4 The Variables “USELIB” in the “Makefile” File

 18 / 20

7.4 Debug Configuration

The default “make” compilation is with “-g” debugging information. To compile a release version, use

“make release =y”.

7.5 Optimization Level

The default optimization level is set to “-Os”, which takes into account both code size and execution

speed.

 19 / 20

8. Version History

Version Date Changes

V1.0 2022.05.16 Initial release

 20 / 20

9. Disclaimer

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD. (Hereinafter

referred to as NSING).

This document, and the product of NSING described herein (Hereinafter referred to as the Product)

are owned by NSING under the laws and treaties of Republic of Singapore and other applicable

jurisdictions worldwide. The intellectual properties of the product belong to Nations Technologies Inc.

and Nations Technologies Inc. does not grant any third party any license under its patents, copyrights,

trademarks, or other intellectual property rights. Names and brands of third party may be mentioned

or referred thereto (if any) for identification purposes only. NSING reserves the right to make changes,

corrections. enhancements, modifications, and improvements to this document at any time without

notice. Please contact NSING and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes

no responsibility for the accuracy and reliability of this document. It is the responsibility of the user of

this document to properly design, program, and test the functionality and safety of any application

made of this information and any resulting product. In no event shall NATIONS be liable for any direct,

indirect, incidental, special, exemplary, or consequential damages arising in any way out of the use of

this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any

malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.

Such applications are deemed, Insecure Usage’. Insecure usage includes, but is not limited to:

equipment for surgical implementation, atomic energy control instruments, airplane or spaceship

instruments, all types of safety devices, and other applications intended to supporter sustain life. All

Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold NATIONS

harmless from and against all claims, costs, damages, and other liabilities, arising from or related to

any customer's Insecure Usage Any express or implied warranty with regard to this document or the

Product, including, but not limited to. The warranties of merchantability, fitness for a particular

purpose and non-infringement are disclaimed to the fullest extent permitted by law. Unless otherwise

explicitly permitted by NATIONS, anyone may not use, duplicate, modify, transcribe or otherwise distribute this

document for any purposes, in whole or in part.

	1. Overview
	2. Development Tool
	2.1 Software
	2.2 Hardware

	3. Development Environment Setup
	3.1 Installing VSCode
	3.2 Installing the GCC Compilation Tool Chain
	3.3 Installing Make for Windows
	3.4 Installing the JLink Tool
	3.5 Adding Chip Support
	3.6 JLink Download Test

	4. SDK Contens
	4.1 Makefile
	4.2 .s File
	4.3 .ld File
	4.4 Printing Remapping
	4.5 JLink Script
	4.6 Clearing Scripts

	5. Compile and Download
	5.1 Workspace
	5.2 Working Directory
	5.3 Code Compilation
	5.4 Downloading Firmware
	5.5 Clearing Intermediate Files

	6. Code Debugging
	6.1 VScode Settings
	6.2 Makefile Settings
	6.3 Debugging Examples

	7. Configuration Changes
	7.1 Chip Model
	7.2 Firmware Download Algorithm
	7.3 Using the SDK Algorithm Library
	7.4 Debug Configuration
	7.5 Optimization Level

	8. Version History
	9. Disclaimer

