

Application Note

MSI Frequency Adjustment

Introduction

This document describes the MSI frequency adjustment method, facilitating users to adjust the frequency of MSI according to their actual requirements during regular operate.

This document is applicable to N32G43x&N32L43x&N32L40x series products of NSING Technology.

Contents

CONTENTS		
1 OVERVIEW	3	
2 MULTI-SPEED INTERNAL (MSI) RC OSCILLATOR ELECTRICAL CHARACTERISTICS	4	
2.1 FUNCTION DESCRIPTION	5	
2.2 Using Tutorial		
2.3 USING DEMO	7	
3 VERSION HISTORY	9	
4 DISCLAIMER	10	

1 Overview

After series of N32G43x&N32L43x&N32L40x is packaged by the packaging factory or after mounting and Reflow by the user, it may cause multi-speed internal (MSI) RC oscillator frequency deviation issues. For example, the maximum deviation after Reflow process may be approximately 2.0%. Because frequency deviation in the MSI may lead to operation issues about peripherals relying on the MSI as a clock source, it is essential to correct the frequency of MSI.

2 Multi-speed Internal (MSI) RC Oscillator Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
fmsi	Range 0		-	100	-	KHz
	Range 1		-	200	-	KHz
	Range 2	MSI Frequency after Factory	-	400	-	KHz
	Range 3	calibration, done at $V_{DD}\!=\!3.3V$ and T_A	-	800	-	KHz
	Range 4	= 27 °C	-	1	-	MHz
	Range 5		-	2	-	MHz
	Range 6		3.96 ⁽⁴⁾	4(4)	4.1(4)	MHz
Δτεμρ (MSI) ⁽²⁾	MSI oscillator frequency drift over temperature	$T_A = 0$ to 85 °C	-	±1%@4M ±1.2%@100k	-	%
		T_A = -40 to 105 °C	-	±2%@4M ±3%@100k	-	%
$\Delta v m DD(MSI)^{(2)}$	MSI oscillator frequency	Range 0, $V = 1.8V_{DD}$ to $3.6V$	-	0.5 / - 1.5	-	%
	drift over V _{DD} (reference is 3 V)	Range 6, $V = 1.8V_{DD}$ to 3.6V	-	0.5 / - 5	-	%
tsu(MSI) ⁽³⁾	MSI oscillator start-up time	Range 0 /100k	-	20	-	us
		Range 1 /200k	-	12	-	us
		Range 2 /400k	-	8	-	us
		Range 3 /800k	-	6	-	us
		Range 4 /1M	-	10	-	us
		Range 5 /2M	-	7	-	us
		Range 6 /4M	-	6	-	us
Idd(MSI) ⁽³⁾	MSI oscillator power consumption	Range 0 /100k	-	1.0	-	uA
		Range 1 /200k	-	1.2	-	uA
		Range 2 /400k	-	1.8	-	uA
		Range 3 /800k	-	3.2	-	uA
		Range 4 /1M	-	6	-	uA
		Range 5 /2M	-	9	-	uA
		Range 6 /4M	-	16	-	uA

Table 2-1 MSI Oscillator Characteristics (1)

Notes:

 $^{(1)}V_{DD} = 3.3V$, $T_A = -40 \sim 105 \ ^{\circ}C$ unless otherwise specified.

⁽²⁾*This deviation range is the deviation of the oscillator after calibration;*

⁽³⁾Guaranteed by design, not tested in production.

⁽⁴⁾After Reflow, the frequency will deviate, and the maximum deviation value is about 2.0%.

From Table 1-1 of the MSI Oscillator Characteristics, it can observe that the frequency range of the MSI at junction temperature of 27°C is 3.96MHz to 4.1MHz. After chip is packaged by the packaging factory or after mounting production and Reflow by the user, it may cause multi-speed internal (MSI) RC oscillator frequency deviation issues.

NSING Technologies Pte. Ltd. Add: NSING, Teletech Park #02-28, 20 Science Park Road, Singapore 117674 Tel: +65 69268090 Email: sales@nsing.com.sg

The maximum deviation after Reflow may be approximately 2.0%.

2.1 Function Description

Function Prototype: void RCC_MSI_Trimming_Auto(void);
This function allows automatic trimming MSI without manual intervention in order to eliminate MSI frequency deviation issues caused by packaging process at the packaging plant.
Parameter description: void
Return : void

Function Prototype: void RCC_MSI_Trimming_Value_Get_Manual(uint8_t* p_value); This function can obtain the coarse and fine tuning values of the current MSI. Parameter description: p_value[0]: return the current MSI coarse turning value, ranging from 0x00 to 0x0F p_value[1]: return the current MSI fine turning value, ranging from 0x00 to 0x0F Return : void

Function Prototype: MSI_TRIM_STATE RCC_MSI_Trimming_Manual(MSI_TRIM_MODE mode, MSI_TRIM_DIRECTION dir, uint8 t value);

This function allows for user adjustment of the MSI frequency, in order to eliminate MSI frequency deviation issues caused by the mount assembly Reflow process.

Parameter description:

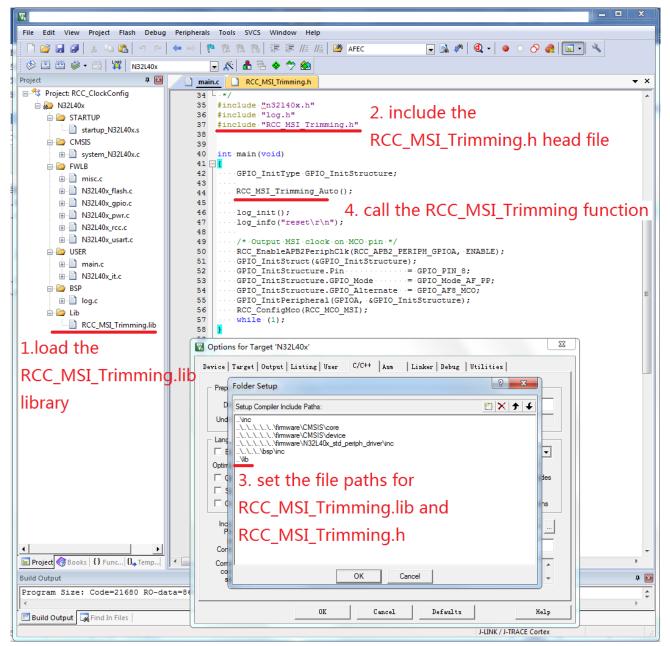
mode: MSI_TRIM: select coarse turning MSI_OPT: select fine turning

type: MSI_INC: increase MSI frequency MSI_DEC: decrease MSI frequency

value: The calibration trimming value ranges from 0x00 to 0x0F

Note: The value of the 'value' parameter, when added to the coarse or fine tuning values obtained through the function void RCC_MSI_Trimming_Value_Get_Manual(uint8_t* p_value) cannot be greater than 0x0F Return : MSI_TRIM_STATE can return the following types:

MSI_TRIM_SUCCESS: MSI frequency turning succeeded MSI_TRIM_ERROR_MODE: input incorrect mode parameter MSI_TRIM_ERROR_DIR: input incorrect frequency turning direction parameter MSI_TRIM_ERROR_VALUE: input invalid value parameter

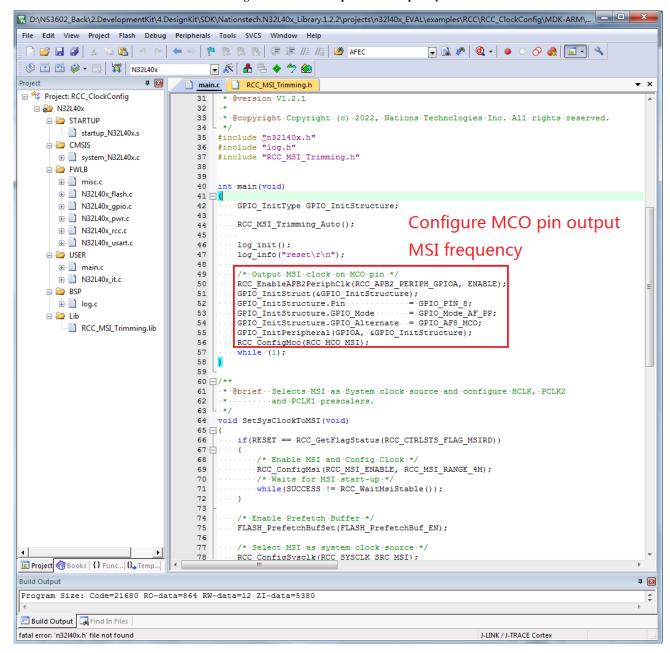


2.2 Using Tutorial

Steps for using the RCC_MSI_Trimming.lib library.

- 1. Load RCC_MSI_Trimming.lib to enter the project.
- 2. Include the trimming.h header file.
- 3. Set the file paths for RCC_MSI_Trimming.lib and RCC_MSI_Trimming.h
- 4. Call the RCC_MSI_Trimming function to complete the MSI trimming work.

Figure 1-1 Step For Using The RCC_MSI_Trimming.Lib Library



2.3 Using Demo

Refer to chapter 2.2 to configure the project using the demo. To observe of MSI frequency, Configure the MCO output MSI clock in the program, as shown in the following Figure 1-2.

Figure 1-2 MCO Output MSI Frequency

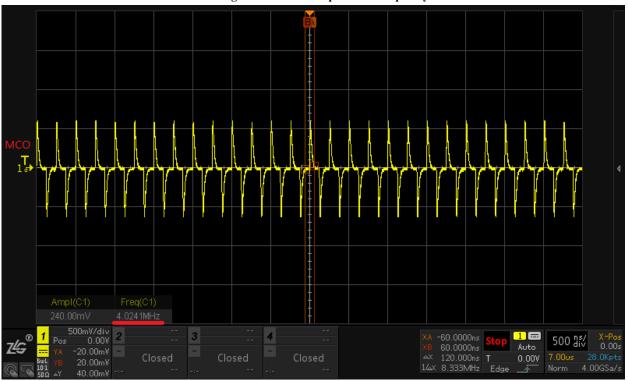


Figure 1-3 MCO Output MSI Frequency Waveform

By measuring the MCO output pin through an oscilloscope, MSI frequency is 4.02MHz after trimming.

3 Version History

Version	Date	Changes
V1.0	2023.03.15	Initial release

nsing.com.sg

4 Disclaimer

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD. (Hereinafter referred to as NSING). This document, and the product of NSING described herein (Hereinafter referred to as the Product) are owned by NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions worldwide. The intellectual properties of the product belong to Nations Technologies Inc. and Nations Technologies Inc. does not grant any third party any license under its patents, copyrights, trademarks, or other intellectual property rights. Names and brands of third party may be mentioned or referred thereto (if any) for identification purposes only. NSING reserves the right to make changes, corrections, enhancements, modifications, and improvements to this document at any time without notice. Please contact NSING and obtain the latest version of this document before placing orders. Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no responsibility for the accuracy and reliability of this document. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or consequential damages arising in any way out of the use of this document or the Product. NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, Insecure Usage'. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to supporter sustain life. All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any

customer's Insecure Usage Any express or implied warranty with regard to this document or the Product, including, but not limited to. The warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed to the fullest extent permitted by law. Unless otherwise explicitly permitted by NATIONS, anyone may not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.