

1 / 23

Application Note

N32G031 Series Security Startup Application Note

Introduction

Security plays an increasingly important role in the field of electronic applications. In electronic

design, the level of component safety requirements is increasing, and electronic equipment

manufacturers are incorporating many new technology solutions into new component designs.

Software technologies are emerging to improve security. Standards for hardware and software

security requirements are also under continuous development.

This document describes how the project in N32G031 MCU performed the requirements of

IEC60730 software safety related operations and related application code content.

This document applies to the N32G031 series products of National Technologies.

2 / 23

Content

Content ... 2

1. IEC60730 Class B software standard .. 3

2. Test Point Process Description ... 4

2.1 Check the Flow at Startup ... 5

2.1.1 CPU Startup Detection .. 6

2.1.2 Detection when Watchdog Starts .. 7

2.1.3 FLASH Startup Detection ... 8

2.1.4 RAM Startup Detection .. 12

2.1.5 Clock Startup Detection .. 13

2.1.6 Control Fow Startup Detection ... 15

2.2 Run Time Inspection Process .. 15

2.2.1 CPU Runtime Detection ... 15

2.2.2 Stack Boundary Runtime Overflow Detection ... 16

2.2.3 System Clock Running Detection ... 17

2.2.4 FLASH Runtime Detection... 18

2.2.5 Watchdog Running Detection ... 19

2.2.6 Local RAM Runtime Self-check .. 19

3. Key Points of Software Library Migration .. 21

4. Version History .. 22

5. Disclaimer .. 23

3 / 23

1. IEC60730 Class B software standard

To ensure the safety of electrical appliances, risk control measures during software

operation need to be evaluated.

IEC60730, issued by the International Electrotechnical Commission, introduces the

requirements for the evaluation of software for household appliances. In Appendix H(H.2.21),

software is classified as follows:

Category A software: the software only realizes the functions of the product and does not

involve the security control of the product. Software for room thermostats, lighting controls...

Category B software: software designed to prevent unsafe operation of electronic devices.

For example, the washing machine software with automatic door lock control, the induction cooker

software with overheating control...

Category C software: software designed to avoid certain specific hazards. Such as automatic

burner control and hot break of closed water heater (mainly for some explosive equipment)

The specific evaluation requirements of class B software include components to be tested and

related faults and test schemes, which are sorted out in the following table (refer to IEC60730

Table H.11.12.7) :

Components to be detected Fault/error
Fault

classification

Nations

with

library

Test Solution Overview

1.CPU

1.1 register
Hysteresis (Stuck

at)
MCU related Y

Write relevant registers and

check

1.3 Program counter
Hysteresis (Stuck

at)
MCU related Y

When the PC runs fly, start

the watchdog reset

2.Interruption

No interrupts or

interrupts too

frequently

Application

of the

relevant

N
Count the number of

interrupts

3. The clock Wrong frequency
MCU related

Y
Use HSI to measure HSE

clock frequency

4. Memory

4.1 Non-volatile

memory
All single bit errors

MCU related
Y

FLASH CRC integrity

check

4.2 Volatile memory DC fault
MCU related

Y
1. SRAM March C test
2. Stack overflow detection

4.3 Addressing

(related to non-

volatile and volatile

memory)

Hysteresis (Stuck

at)

MCU related

Y
FLASH/SRAM tests are

included

5. Internal data

path

5.1 data
Hysteresis (Stuck

at)

MCU related
N

Only for MCU using

external memory,

monolithic MCU is not

required
5.2 addressing Wrong address

MCU related
N

4 / 21

External

communication

6.1 data
The Hamming

distance is 3

Application

of the

relevant

N

Add verification in data

transfer

6.2 addressing Wrong address

Application

of the

relevant

N

6.3 sequential Wrong timing

Application

of the

relevant

N

Count the number of

communication events

7. Input and

output

7.1 digital I/O
Error defined in

H27

Application

of the

relevant

N None

7.2 Analog input and

output

Error defined in

H27

Application

of the

relevant

N None

2. Test Point Process Description

Class B software package program inspection content is divided into two main parts: self-check

at startup and periodic self-check at runtime. Self-test at startup includes:

⚫ CPU detection

⚫ Watchdog detection

⚫ Flash integrity detection

⚫ RAM function detection

⚫ System clock Detection

⚫ Control flow detection

Periodic self-check at runtime:

⚫ Local CPU kernel register detection

⚫ Stack boundary overflow detection

⚫ System clock running detection

⚫ Flash CRC segmentation detection

⚫ Watchdog detection

⚫ Local RAM self-check (in interrupt service routines)

The overall flow diagram is as follows:

5 / 21

Jump to main

Runtime cycle self-check

initialization

SelfTest_InitRunTimeChecks()

While loop

Runtime cycle self-check

initialization

SelfTest_DoRunTimeChecks()

Other Task

RESET

Self check when starting

STL_StartUp()
Error Handling

FailSafePOR()

Time base interrupt

function

SysTick_Handler()

Other Interrupt handling

2.1 Check the Flow at Startup

Before the chip enters main function from startup, the startup detection is carried out first,

and the startup file is modified to execute this part of the code. After the detection process is

over, the __iar_program_start function is called to jump back to main function.

The following is a flow diagram for performing a bootstrap self-check:

6 / 21

STL_StartUp()

CPU registers and flags self test

WDOGs functionality self test

Non-volatile memory CRC check

Volatile memory functional test

Main routine FailSafePOR()

RESET

fail

fail

fail

Clock Frequency Self Test

Verify Control flow

fail

fail

HW reset

2.1.1 CPU Startup Detection

CPU self-check mainly checks whether the kernel flags, registers and so on are correct. If an

error occurs, FailSafePOR () is called.

CPU self-check at startup and runtime will be carried out, at startup, R0~R12, PSP, MSP register

and Z(zero), N(negative), C(carry), V(overflow) flag bit function test will be a self-check; When

run, periodic self-check, only detect registers R1~R12.

Register detection is implemented as follows: write 0xAAAAAAAA and 0x55555555 to the

register respectively, and then compare whether the read value is the written value. Write 1 after

R1 is tested, write 2 after R2 is tested, and so on.

The specific implementation method of flag bit detection is as follows: set the flag position bits

respectively. If the flag bit is checked incorrectly, the fault function will be entered. The

7 / 21

detection flow diagram is as follows:

Test R1-R12

Check R1-R12 is 1-12

Test Process Stack pointer

Test Main Stack pointer

FailSafePOR()

fail

fail

fail

fail

Test OK

Test R0

Test flag

fail

fail

2.1.2 Detection when Watchdog Starts

Test to verify that independent watchdog and window watchdog can be reset correctly to ensure

that runfly can be reset in time to prevent jam when the program is running.

After the initial reset, clear all reset status register flag bits, start the IWDG test, reset the chip,

and judge whether it is the IWDG reset flag bit; if it is set, start the WWDG test to reset the chip,

if the WWDG reset flag bit is set, the watchdog test passes,clear all flags.

The flow diagram is as follows:

8 / 21

Clear all flags

Test OK

Do not reset the

watchdog

IWDG Reset?

WWDG Reset?

Clear all flags

Start IWDG test;

Start WWDG test;

Clear all flags

RESET

YES

YES

YES

NO

NO

NO

HW reset

HW reset

SW reset

2.1.3 FLASH Startup Detection

FLASH self-check is a program that calculates FLASH data with CRC algorithm and compares

the result value with the CRC value calculated during compilation and stored in the specified

location of FLASH to confirm the integrity of FLASH.

The flow diagram is as follows:

9 / 21

Compute 32bit CRC

for specified range

Test OK FailSafePOR()

NO

compare with CRC check_sum

YES

The FLASH range of CRC calculation is configured according to the actual situation of the

whole program, and the method is different in KEIL and IAR.

IAR configuration:

The CRC calculation is supported in the IAR configuration options. Just configure the

parameters, and the compiled file will automatically add the CRC check_sum value to the

selected FLASH calculation range:

10 / 21

The range of calculating CRC in the program is configured according to the .icf file, which can

be modified according to the needs. Add 4 to the above configuration:

Keil configuration:

The configuration of Keil is more complicated. ARM officially recommends using the third-party

software SRecord for ROM Self-Test in MDK-ARM.

According to the project configuration, after the compilation is completed, the script file

11 / 21

srecord_crc32.bat will be called. Through the srec_cat.exe software, the data in the

N32G031_SelfTest.hex file generated by Keil will be calculated by CRC, and the CRC check

result will be generated. Add to the specified location to get a new N32G031_SelfTest_CRC.hex

file:

Open the .bat file with Notepad or other tools, and modify the following according to the actual

application:

The range of calculating CRC in the program is configured according to the

n32g0xx_STLparam.h file, which can be modified according to requirements, which is

consistent with the above configuration:

Therefore, the final generated N32G031_SelfTest_CRC.hex file needs to be used whether it is

downloading or debugging, so the .ini file needs to be added to the Keil configuration option to

download the new .hex file. The configuration is as follows:

12 / 21

It should be noted that the .ini file should also modify the content file name configuration

according to the actual application:

2.1.4 RAM Startup Detection

SRAM detection detects errors not only in the data region, but also in its internal address and

data path.

SRAM self-check uses The Mar-C algorithm, which is an algorithm used for SRAM testing of

embedded chips as part of security certification. All ranges of SRAM are detected at startup.

First, the whole SRAM is cleared, and then 1 bit by bit, each set one bit, test whether the bit is 1,

if it is, continue, if not, an error is reported; After all are set, clear 0 bit by bit. After clearing a

bit, test whether the bit is cleared to 0 or not. If it is, it is correct, otherwise, an error is reported.

Until the test of the entire RAM space is completed.

The test time is 6 cycles, and the whole RAM is checked and filled word by word alternately

with the values 0x00 and 0xFF. The first 3 cycles are executed according to increasing address,

and the last 3 cycles are executed according to decreasing address.

The whole RAM detection algorithm process is shown in the figure below:

13 / 21

Fill RAM with 0x00

Scramble Test Check 0x00?

fill 0xFF;

Scramble Test Check 0xFF?

fill 0x00;

Scramble Test Check 0x00?

fill 0xFF;

Scramble Test Check 0xFF?

fill 0x00;

FailSafePOR()

fail

fail

fail

Test OK

Scramble Test Check 0xFF?

fill 0x00;

Increasing order

of addresses

Decreasing order

of addresses

fail

fail

2.1.5 Clock Startup Detection

The test principle is as follows:

1. Start the external high-speed clock source (HSE).

2. Before the test starts, the system clock source is set to HSI by default. Then, initialize RTC(LSI

clock source) and Systick (system clock source). When the Systick count is decremented from the

reload value to 0. Record the current RTC count to get the HSI Cnt.

3. Set the system clock source to HSE and initialize RTC(LSI) and Systick (system clock source)

to obtain HSE Cnt in the same manner.

4. Take HSI clock frequency as the standard, calculate HSE frequency according to the following

flow chart formula, and compare the frequency value with the expected range value: if it exceeds

+/-25%, the test fails. After the test, switch to the system clock source HSI. The expected range

can be adjusted by users according to actual applications. Macros are defined as HSE_LimitHigh()

and HSE_LimitLow().

14 / 21

Run RTC(LSI) & SysTick (HSE)

Switch clock from HSE to HSI

FailSafePOR()

NO

HSE frequency error range +/-25%?

Measure HSE according to LSI

YES

Switch clock from HSI to HSE

Enable HSE clock

Enable LSI clock

Test OK

fail

fail

fail

Run RTC(LSI) & SysTick (HSI)

Measure HSI according to LSI

HSE clock= HSI clock * (HSI Cnt) / (HSE

Cnt)

 Get the HSI Cnt

 Get the HSI Cnt

15 / 21

2.1.6 Control Fow Startup Detection

The self-check part of the startup ends with the control flow detection pointer program.

Initialize the variables CtrlFlowCnt to 0, CtrlFlowCntInv to 0xFFFFFFFF. In each test step,

CtrlFlowCnt adds a fixed value, CtrlFlowCntInv subtracting the same fixed value. At the end of

the start self-check, judge whether the sum of the two values is still 0xFFFFFFFF.

2.2 Run Time Inspection Process

If the startup self-check passes successfully, the run-time periodic self-check must be initialized

before entering the main loop.

The runtime checks periodically based on Systick. The run-time periodic detection process is as

follows:

Partial CPU core test

Stack boundaries test

Clock test

Partial CPU core test

FailSafePOR()

fail

fail

fail

Partial FLASH CRC test

Refresh iwdg and wwdg

Control flow test

fail

fail

HW reset

Tick=0

TimeBaseFlag=1

Clock measurement

Partial

RAM test

Return

Tick>

Time Base

Tick++

Jump to Systick

interrupt

TimeBaseFlag?

TimeBaseFlag=0

Main fun

fail

YES

NO

YES

NO

2.2.1 CPU Runtime Detection

The CPU runtime periodic self-check is similar to the self-check at startup, except that the kernel

flags and stack Pointers are not detected.

16 / 21

Push R4-R7

Test R1-R12

Test Ramp pattern verification

Pop R4-R7

FailSafePOR()

fail

fail

Test OK

2.2.2 Stack Boundary Runtime Overflow Detection

This test detects stack overflow by determining the data integrity of pattern array in the boundary

detection area. If the original pattern data is corrupted, the test fails and a fail-safe program is

invoked.

The lower address closely following the stack area is defined as the stack boundary detection

area. This area can be configured differently depending on the device. The user must define

enough areas for the stack and ensure that pattern is placed correctly.

17 / 21

Zero Page

Class B variable (complement)

Class B variable

Stack boundary detection area

Stack

Check border patterns

Test OK FailSafePOR()

NO

Any pattern corruption?

YES

2.2.3 System Clock Running Detection

The detection of system clock during runtime is similar to that during startup. HSE frequency is

calculated through HSI Cnt and HSE Cnt, and the process is as follows:

18 / 21

HSE clock= HSI clock * (HSI Cnt) / (HSE

Cnt)

Test OK FailSafePOR()

NO

HSE clock error range +/-25%?

YES

2.2.4 FLASH Runtime Detection

The Flash CRC self-check is performed during the runtime. Because the detection range varies

with the time required, you can configure segmented CRC calculation based on the size of the

user application. When the CRC values are calculated to the last range, the CRC values are

compared.

19 / 21

FailSafePOR()

NO
FLASH_pointer at

ROM_END?

YES

CRC = _checksum?

Init CRC comptutation

Test OK

Compute continuous CRC

over the current block

Set FLASH_Pointer

To next block

Test On going

NO

YES

2.2.5 Watchdog Running Detection

During runtime, dogs need to be fed regularly to ensure the normal operation of the system. The

watchdog dog feeding part is placed at the end of STL_DoRunTimeChecks().

2.2.6 Local RAM Runtime Self-check

The RAM self-check at run time is done in the Systick interrupt function.The test covers only the

portion of memory allocated to the class B variable.

According to the area divided by the class B variable, every 6 bytes is a block. Before the March-

C test, save the block data in the RunTimeRamBuf, and then put the RunTimeRamBuf back to

the original area of the class B after the test is completed. Until all tests in the class B area are

completed.

After the class B zone test is complete, the RunTimeRamBuf zone is march-c tested. After the

test is complete, the pointer is restored to the class B start address for the next test.

20 / 21

RunTimeRamBuf

Class B variable (complement)

Class B variable

Stack boundary detection area

Stack

copy

FailSafePOR()

NO

RAM_pointer=End

of Class B RAM?

YES

RAM_pointer = Start of

Class B RAM

Test OK

RAM_pointer+=blcok_size

Test On going

fail

fail

Save content of RAM

block into the Buffer

Apply March test to the

RAM Block

Restore content of RAM

Block from the Buffer
Apply March test to the

RAM Buffer

21 / 21

3. Key Points of Software Library Migration

• Before executing the user program, execute the STL_StartUp function (to start the self-

check);

• Set WWDG and IWDG to prevent them from being reset when the program is running

properly;

• Set up RAM and FLASH detection range at startup and runtime;

− The range of CRC checksum, and the location where the checksum is stored in the Flash

− The range of storage addresses for ClassB variables

− Location of stack boundary detection area

• Troubleshoot detected faults.

• Add user-related fault detection content based on specific applications;

• Define the frequency of program runtime self-check according to the specific application;

• After the chip is reset, the STL_StartUp function must be called for startup self-check before

initialization.

• Call STL_InitRunTimeChecks() before entering the main loop, and call

STL_DoRunTimeChecks() in the main loop;

• Users can release Verbose comments to enter diagnostic mode and output text information

through the Tx(PA9) pin of USART1.

Set the serial port to 115200Bits/s, no parity, 8-bit data, and 1 stop bit.

22 / 21

4. Version History

Version Date Note

V1.0 2021-11-06 Create a document

V1.1 2022-05-18 Document content proofreading, formatting adjustment

V1.2 2022-09-07 Chapter 2.1.3 adds keil project configuration instructions

23 / 21

5. Disclaimer

 This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD.(Hereinafter referred to as NSING).

This document, and the product of NSING described herein (Hereinafter referred to as the Product) are owned by

NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions worldwide. The

intellectual properties of the product belong to Nations Technologies Inc. and Nations Technologies Inc. does not

grant any third party any license under its patents, copyrights, trademarks, or other intellectual property rights. Names

and brands of third party may be mentioned or referred thereto (if any) for identification purposes only. NSING

reserves the right to make changes, corrections. enhancements, modifications, and improvements to this document at

any time without notice. Please contact NSING and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no

responsibility for the accuracy and reliability of this document. It is the responsibility of the user of this document to

properly design, program, and test the functionality and safety of any application made of this information and any

resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or

consequential damages arising in any way out of the use of this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure

of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed,

Insecure Usage’. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy

control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to

supporter sustain life. All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold

NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any

customer's Insecure Usage Any express or implied warranty with regard to this document or the Product, including,

but not limited to. The warranties of merchantability, fitness for a particular purpose and non-infringement are

disclaimed to the fullest extent permitted by law. Unless otherwise explicitly permitted by NATIONS, anyone may

not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.

	Content
	1. IEC60730 Class B software standard
	2. Test Point Process Description
	2.1 Check the Flow at Startup
	2.1.1 CPU Startup Detection
	2.1.2 Detection when Watchdog Starts
	2.1.3 FLASH Startup Detection
	2.1.4 RAM Startup Detection
	2.1.5 Clock Startup Detection
	2.1.6 Control Fow Startup Detection

	2.2 Run Time Inspection Process
	2.2.1 CPU Runtime Detection
	2.2.2 Stack Boundary Runtime Overflow Detection
	2.2.3 System Clock Running Detection
	2.2.4 FLASH Runtime Detection
	2.2.5 Watchdog Running Detection
	2.2.6 Local RAM Runtime Self-check

	3. Key Points of Software Library Migration
	4. Version History
	5. Disclaimer

